Writing Filters and Tools for L2Global
v0.5

D. Casey
Michigan State University

September 18, 2000

This document outlines the procedure to writing a tool and filter for L2Global.
If you have any questions/comments, please contact Dylan Casey (casey@pa.msu.edu).

1 Nomenclature

A routine that evaluates data from the L2 preprocessors and constructs a list
of candidate physics objects is called a tool. A routine which evaluates lists of
candidate objects is called a filter. Tools create candidate electrons, photon,
taus, muons, etc. Filters ask whether there are candidate objects that satisfy
some refined criteria. A specific filter considers only objects of a specific type —
electrons, jets, or taus. A generic filter considers any type of object created by
a tool — electrons and jets and muons. For instance, the tool EMTool creates a
list of electromagnetic objects (EMObj) by matching EM clusters from L2CAL
(satisfying some minimum Et value) with preshower clusters from L2CPS and
L2FPS and with tracks from L2CTT. The specific filter EMFilter searches the
list looking for candidates that satisfy some more stringent (configurable) cri-
teria such as a higher Et cut, isolation cut, emfraction cut, etc. The generic
filter MassFilter would consider the generic kinematic properties of the specific
objects and cut on the mass value of a combination of them.

2 Creating a Tool
The coding requirements for a tool are the following;:

e tools inherit from the template class TFilter<[object type]>
e their only public method is print

e the two required private methods are execute(void) and initialize(void),
and a static variable that holds the number of filters created

e all configuration parameters (set by data from the parser) are private

e the constructor must declare the tag for the tool to the parser via
12gblworker: : TFilter<[object typel>(‘‘[name]’’,_count),e.g.,
12gblworker: : TFilter<EMObj> (‘‘GENEMTO0L’, _count)

e the constuctor ought to set default values for all of configuration param-
eters

The algorithm for a tool is contained in the execute function. Every execute
function begins by calling reset(), so that the relevant lists are reset to zero.
Tools inherit from TFilter<ObjType> because they create lists of specific ob-
jects — jets, taus, emobjects.

The perl script makeL.2ToolFilterSkeleton may be run to generate the skele-
ton code for a L2 tool or filter. The script is contained in the 12gblworker
package. The script is executed in the following manner:

makelL2ToolFilterSkeleton -author "Dylan Casey" -email
"casey@pa.msu.edu" -package "l2gblem" -class "EMTool" -store
"EMObj" -toolname "EMTOOL"

Two files are created: EMTool.hpp and EMTool.cpp. There are notations within
the skeleton showing where important pieces of user code must be added. De-
fault values for each of the arguments are used if they are not configured explic-
itly. See the preamble of the script for the default values of the parameters.

The following is the output for EMTool.hpp made by makeL.2ToolFilterSkeleton
when run with the example configuration above:

//

// File: EMTool.hpp

// Purpose:

// Created: 1 September 2000 by Dylan Casey
//

// Comments:

//

// Revisions:

//

#ifndef _L2GBLEM_EMTOOL_HPP
#define _L2GBLEM_EMTOOL_HPP
#include "12base/L2.hpp"

#include "12gblworker/TFilter.hpp"
#include "12gblem/EMObj.hpp"

// Start namespace for this package
namespace 12gblem {

//
// CLASS : EMTool

//

/// This is a tool for L2 Global.
/** This is a tool for L2 Global

Qauthor Dylan Casey (casey@pa.msu.edu)

@version 0.1 1 September 2000
*/
// //
class EMTool : public 12gblworker::TFilter<EMObj> {
public:

/** Constructor which sets the tool requirements to
their default values. The default cut values are set
to allow everything to pass. In this way nothing
should get thrown away if this tool gets called
without being initialized due to some bug.

*/

EMTool (void) ;

/** Print out the filter’s configuration to the given
output stream. This function print out the tool’s
configuration to the given output stream.

*/

void print(std::ostream &ostr);
private:

/** Executes the filter algorithm. This method is called at
most once per event and will fill the list with electromns
from the specified source which satisfy the filter cuts.

*/

void execute(void);

/** Initializes the electron filter using the parser data.
This is the method called by the parser to initialize the
filter using the configuration data. It will only be
called when the parser has read a configuration object
for this electron filter.

Q@return true is initialization was successful, false otherwise

*/

bool initialize(void);

// Count of the number of filters created so far
static uint32 _count;

[*xkkxkkkxkk Put cut parameters here kokkkkkkkkkxkk/

};

// Constructor inline EMTool: :EMTool(void)
12gblworker: : TFilter<EMObj>("EMTOOL", _count){
_count++;

/***xxx*xinitialize cut parameters here *x**xx/

}

} // end namespace 12gblem

#endif // _L2GBLEM_EMTOOL_HPP
Here is the corresponding source code:

//

// File: EMTool.cpp

// Purpose: Source code for EMTool class
// Created: 1 September 2000 Dylan Casey
//

// Comments:

//

// Revisions:

//

#include "12gblem/EMTool.hpp"

#include "12gblem/EMObj.hpp"

#include "12gblworker/GlobalWorker.hpp"
#include "12gblworker/GlobalInput.hpp"
#include "12gblworker/GlobalOutput.hpp"

using namespace 1l2gblworker;

// Start namespace for this package
namespace 12gblem {

// Declaration of static filtercounter
uint32 EMTool::_count=0;

// Initializes the EMTool class; called by the l2parser
bool EMTool::initialize(void) {

[**kxkxx*k* retrieve cut values from L2 parser kxkkxkkskokxkskksiokkkkkk/

return true;

}

// Executes the filter process
void EMTool::execute(void) {

// Reset the filters
reset();

// Include some output that is useful during debugging.
// Right now, the flag can only be toggled by recompiling.
bool debug = false;
if (debug){
std::cout << "EMTool" << parserID() << " has been called!" << std::endl;

}
//

print(std::cout);

}

[FFkkrckkokkokkkokkokk Put the algorithm here sksckskkskskokskskkskk /

// Getting this far means we have a EMObj!

// Fill in the information and add it to the list of passed objects
EMObj *storeobj = new EMObj;

/**x*** set the values of the EMObj data members here *x*x*/
add0bject (storeobj) ;

// adds electron to pass list for the filter

if (debug) {

storeobj->print(std::cout);

std::cout << "Adding EMObj to list for EMTool" << std::endl;
X

if (debug) {std::cout << "\nEMTool execute ends here!'"<<std::endl;}

Prints out the filter’s configuration

void EMTool::print(std::ostream &ostr) {

}

ostr << parserID() << " {" << std::endl;

/***% list the parameter names and their values here *xx*x*/
ostr << " PAR1 = " << _parl << std::endl;

ostr << " PAR2 = " << _par2 << std::endl;

ostr << "}'" << std::endl;

} // end namespace 12gblworker

Finally, here is the code skeleton for the stored object:

//
//
//
//
//
//
//
//
//

File: EMObj.hpp
Purpose:
Created: 1 September 2000 by Dylan Casey

Comments:

Revisions:

#ifndef _L2GBLEM_EMOBJ_HPP
#define _L2GBLEM_EMOBJ_HPP
#include "12base/L2.hpp"
#include "12base/io.hpp"
#include "12utils/Storable.hpp"

#include DATAHEADER (#***L2I0Class****)
// Start namespace for this package
namespace 12gblem {
//
// CLASS : EMObj
//
/// Holds the EMObj data and creation utilities
/** The class inherits from the 12io data class
L2I0DataClass to have a place to hold the data that is
sent to L2 and from the Storable class.
Q@author Dylan Casey (casey@pa.msu.edu)
Q@version 0.1 1 September 2000
*/
//
class EMObj : public ***xL2I0DataClassx*x*x,
public 12utils::Storable<EMObj> {

public:

/** Constructor
*/

EMObj (void) ;

protected:

private:

}s
// Comnstructor
inline EMObj::EMObj(void) {

} // end namespace 12gblem
#endif // _L2GBLEM_EMOBJ_HPP

3 Creating a Filter

Creating a specific filter is the same a creating a tool. There will be two differ-
ences. Flrst, you will hold a pointer to the objects created by the tool that you
are filtering. You will initialize the pointer in the initialize script that is called
by the parser. The second difference will be in the execute routine. Instead of
creating new Storable objects, you will just be adding existing ones to your list
of stored objects. Compare the EMTool and EMFilter header files, initialize,
and execute routines to see the differences. The files are part of the 12gblem
package.

Creating a generic filter is requires a modest change to the code created by
shell script. You need to inherit from Filter not from TFilter<ObjType>. That
way you have access to all the objects created by all the tools so far.

4 Putting Tools and Filters into the Simulation

The tools and filters are part of 12gblworker. To execute them as part of the
simulation, you must make several changes to 12gblworker.

1. Add the 12gblworker package to your release area

2. Add an instance of your filter or tool to the list of private data members
in GlobalWorker.hpp

3. Add an include reference to the header file for your filter or tool to Glob-
alWorker.hpp

4. Add tsim 1112 and tsim 12 to your release area. tsim 12 will not be
changed, but it is the package that instantiates GlobalWorker, and since
you are modifying the interface to GlobalWorker, you need to recompile
tsim_12.

5. Add the appropriate configuration lines to tsim 1112 /rcp/12gblTrigger.conf
for the particular trigger(s) and filter(s) you want to run.

6. Rebuild everything in your release area.

